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Abstract. We~simulated the diffusion-limited aggregation (DLA) on a pentagonal lattice and on 
an octagonal lanice; the fractal dimensions of the DM on these WO lattices are found to be 1.53 
and 1.57 respxtively, exhibiting a weak lattice dependence. We also calculate the vibrational 
densities of states for the IWO DLA clusters; the &ton dimensions ofthe two DLA clusten a p p w  
to fallow ds = 2df/(df + 1). 

1. Introduction 

Diffusion-limited aggregation @LA) which describes phenomena such as dielectric 
breakdown and electrodeposition has been well studied in recent years [1-8]. Either lattice 
DLA or off-lattice DLA is simulated in two- to six-dimensional spaces [l-81. Lattice DLA is 
known to show a slow crossover in the overall shape. While small clusters of only a few 
thousand particles have a very ramified structure because of strong fluctuations, the shape 
of large clusters of several million particles is dominated by the structure of the underlying 
lattice. Large DLA clusters on a square lattice exhibited a ‘f’ overall shape [ 5 ] .  

As is very well known, off-lattice clusters are fractals with an overall fractal dimension 
df ~= 1.715 + 0.004 [611 Recently, it h e  been found that large off-lattice DLA clusters 
have multifractal features [8,9]. For small x(< 1.5) (x  is the ratio of the’distance from 
the cluster origin to the radius rg of the gyration), the dimension &(x)  remains constant 
(df(x) = 1.65 + 0.06) ,but for large x, d&) experiences a sharp drop. 

Investigations of the dynamical properties of the fractal structure indicate that there is 
a kind of special vibrational elementary excitation: a fracton [lo]. Alexander and Orbach 
[lo] conjectured that the fracton dimension is ds = 4, but it is learned that this conjecture 
does not hold for some fractal structures, e.g. loopless fractals [ll].  For DLA, Havlin and 
Ben-Avraham 1111 showed that the fracton dimension is given by d, = 2df/(dr + 1). 

Investigations of the physical problems of quasi-periodic lattices has attracted much 
interest since the discovery of quasi-crystals by Schechtman et al [12] in 1984. However, 
to date, little attention has been paid to the fractal growth problem on quasi-periodic 
lattices. Owing to the non-periodicity, strictly speaking, the quasi-periodic lattice is not 
homogeneous; one concludes naturally that the quasi-periodic lattice DLA will differ from 
lattice DLA or off-lattice DLA. In this paper, we present the first investigation of DLA on 
quasi-periodic lattices and, for simplicity, we focus on only the isotropic problem. 
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Figure 1. A section of a pentagonal laitice 

2. Quasi-periodic lattice DLA 

We consider the diffusion of the particles on quasi-periodic lattices. With U(%,  k) labelling 
the probability that a particle visits site a: at its kth step, we have 

where the sum runs over all the nearest neighbours of site a:, c(a: + 1 )  representing the 
coordination number of site 3: + 1. For quasi-periodic lattices, c ( z ,  I )  is site dependent. 
Equation (1) is the discrete version of the continuous diffusion equation 

(2) -- t ,  - V[DVu(z ,  t ) ]  
at 

where the diffusion coefficient D is size dependent. In the approximation of U(%, t )  = 0, 
equation (2) reduces to 

As is known, the lattice DLA and off-lattice DLA satisfy the Laplace equation Vzu(%, t )  = 0 
[I] .  In fact, a class of fractals is governed by the Laplace equation, namely the Laplace 
universal class. The quasi-periodic lattice DLA does not satisfy the Laplace equation: 
therefore, the quasi-periodic lattice DLA will not belong to the Laplace universal class, 
and it is anticipated that the fractal dimensions of the quasi-periodic lattice DLA will differ 
from those of lattice DLA or off-lattice DLA. 

V [ D V u ( z ,  t ) ]  = 0. (3) 

3. Simulations 

3.1. Pentagonal lattice DLA 

A pentagonal lattice was first constructed by the use of the generalized dual method [I31 
before simulation, which is shown in figure 1. The first step in simulation is to put a seed 
at the centre of the lattice, i.e. at the site with fivefold symmetry. In the simulation, the 
radius of the launching circle is chosen as r,, + 5, and the radius of the killing circle is 
the larger of rmiu + 10 and 2rm,, where rmar represents the maximal radius of the cluster. 

The DLA cluster produced on the pentagonal lattice is shown in figure 2; it is composed of 
2461 particles. Figure 3 shows the scaling of its maSs M with its size. The fractal dimension 
of the DLA (the slope of the fitting line in figure 3) is evaluated to be 4 = 1.53 + 0.02. 
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Figure 2. A DLA cluster on a pentagonal lattice, 
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Figure 3. The M-L scaling of the pentagonal lattice DLA, which shows that the fractal dimension 
is I .53 + 0.02. ' . 

3.2. Ocragonal lattice Dra 

To perform the DLA simulation on an octagonal lattice, similar to the above, we first produced 
an octagonal lattice by use of the projection method. Figure 4 shows a section of this 
octagonal lattice. This time, the seed is also placed at the centre of the lattice, but the site 
has eightfold symmetry. The xher constraints in the growth are also similar to the above. 

The DLA on the octagonai lattice is shown in figure~5; it is composed of 3286 particles. 
The scaling of its mass M with its size L gives the fractal dimension df = 1.57 + 0.02, 
which is shown in figure 6. 

On comparison with the usual isotropic models of the periodic lattice DLA and off-lattice 
DLA, it can be observed that the fractal dimension of the DLA on the quasi-periodic lattices 
are slightly smaller; they are also different from each other. 
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Figure 4. A section of an Ocragonai lattice 

Figure 5. A DLA cluster on an octagonal lattice 

The DLA clusters produced in our simulation, although not large enough, exhaust the 
computer that we used. As a whole, the construction of quasi-periodic lattice consumes 
much time. An even larger simulation scale is necessary for this subject. In a crude way, 
the above results more or less demonstrate the dependence of the fractal dimension of DLA 
on lattices. 

4. Fracton in quasi-periodic lattice DLA 

We calculated the vibrational density of states (VDOS) of the pentagonal lattice DLA and 
the octagonal lattice DLA using the recursion method of Haydock et a1 [14]. The single 
parameter Born potential, which is expressed as [15] 
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Figure 6. The M-L scaling of the octagonal lanice DLA. which shows that the hhl dimension 
is 1.57 + 0.02. 

is adopted, where the sum for i runs over all the sites of the cluster and j over all the 
nearest neighbours of site i, 01 represents the force constant and q is the displacement of 
site i .  The free-boundary condition is used. 

Figure 7 shows the log-log VDOS of the pentagonal lattice DLA cluster (figure 2); the 
fracton frequency region (the flatter and linear part of the figure) is obviously exhibited. 
Owing to the f i xed  size of the cluster, correspondingly there is a lower limit of fracton 
frequency; beyond the limit, the wavelength will be larger than the cluster size. Similarly, 
the fixed nearest distance between atoms gives the upper limit of fracton frequency. 
According to ds = 2df/(df+ 1) Ell], when df is 1.53,~dS is about 1.21. We plot a straight 
line (solid line) with slope d, - 1 = 0.21 in the figure; it is observed that the line fits the 
fracton DOS quite well. 
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Figure 7. The VDOS of the DLA duster on the pentagonal lattice. 

We  show the log-log VDOS of the octagonal lattice DLA cluster in figure 8. Now, 
d, = 2df/(df + 1) ( 4  = 1.57) gives the fracton dimension to be 1.22. The solid line in the 
figure has a slope of 0.22; it can be seen this line also fits the fracton DOS roughly. 
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Figure 8. The VDOS of the DLA cluster on the octagonal lattice 

5. Summary 

In summary, the simulation of the quasi-periodic lattice DLA shows a weak dependence of 
the fractal dimensions on the adopted quasi-lattices. For the pentagonal lattice, the fractal 
dimension of DLA is 1.53 and, for the octagonal lattice, it is 1.57. The computations of the 
VDOSS of the pentagonal lattice DLA and the octagonal lattice DLA give fracton dimensions 
which follow ds = Zdf/(df + 1). 
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